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ABSTRACT 

To first order in the deviation from scale invariance the inflationary potential 
and its first two derivatives can be expressed in terms of the spectral indices 
of the scalar and tensor perturbations, n and nr, and their contributions to 
the variance of the quadrupole CBR temperature anisotropy, S and T. In ad- 
dition, there is a “consistency relation” between these quantities: nr = -$$. 
We derive the second-order expressions for the inflationary potential and its 
first two derivatives and the first-order expression for its third derivative, in 
terms of n, nT, S, T, and dn/d 1nX. We also obtain the second-order con- 
sistency relation, nr = -$$[l + O.ll$ + O.l5(n - I)]. As an example we 
consider the exponential potential, the only known case where exact analytic 
solutions for the perturbation spectra exist. We reconstruct the potential via 
Taylor expansion (with coefficients calculated at both first and second order), 
and introduce the Pad6 approximant as a greatly improved alternative. 
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1 Introduction 

In inflationary models quantum fluctuations excited on very small length 
scales (- H;l N 10-23cm) are stretched to astrophysical scales (- 10z5cm) 
by the tremendous growth of the scale factor during inflation (HI is the 
value of Hubble parameter during inflation) [l]. This results in almost scale- 
invariant spectra of scalar (density) [2] and tensor (gravitational-wave) [3] 
metric perturbations. Together with the prediction of a spatially-flat Uni- 
verse they provide the means for testing the inflationary paradigm. The ten- 
sor fluctuations lead to cosmic background radiation (CBR) anisotropy and 
a stochastic background of gravitational waves with wavelengths from about 
1 km to over IO4 Mpc. The scalar fluctuations also lead to CBR anisotropy 
and seed the formation of structure in the Universe. 

The amplitudes and spectral indices of the metric fluctuations can be ex- 
pressed in terms of the inflationary potential and its derivatives, evaluated 
at the value of the scalar field when astrophysically interesting scales crossed 
outside the horizon during inflation (from galactic scales to the presently ob- 
servable Universe, corresponding to t,he eight e-foldings about 50 e-folds or 
so before the end of inflation). Techniques have been developed for relating 
the scalar and tensor spectra to the potential and its derivatives in an ex- 
pansion whose small parameter is the deviation from scale invariance [4]. In 
particular, to first order in the deviation from scale invariance t’he spectral 
indices and the power spectra of t,he fluctuations today can be written as [5]’ 

,=,-IGg+!!+, 20 nT = -G, 

P(k) = .4k”jT(k)12, P,(k) = ATk’+ (2) 

A= 
1024a3k;,” 

75Ho” 
l+gnT+ -g+ln2+T (n-1) 1 1 v,a 

-1 (3) 
mh& 

AT = ~[l+(-~+ln2+~)n,.]~. (4) 

‘Several minor ermrs in Ref. [5] have been corrected here: the factors of Hi+* in 

Eqs. (A5, A7) should be Hi; the factor of l.l(n-1) in Eq. (A8) is mnre precisely 1.3(7~-1); 
the factor of 1.27~~ in Eq. (A14) is more precisely 1.4nr. 
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Here Ic is the comoving wavenumber, x = mp,V'/V measures the steepness 
of the potential. prime denotes derivative with respect to the scalar field that 
drives inflation subscript 50 indicates that t,he quantity is to be evaluated 
50 e-folds before the end of inflation,* mpi = 1.22 x 10” GeV is the Planck 
mass, Ho is the present value of the Hubble constant, r,, N 2&i is the 
present conformal age of the Universe, and 7 2: 0.577 is Euler’s constant. 
Scale-invariant metric perturbations correspond to (n - 1) = nT = 0. The 
functions T(lc) and TT(~) are the transfer functions for scalar [7] and tensor [8] 
metric perturbations respectively; for kre < 100, both T(lc) and Tr(k) + 1. 

From these expressions the consequences of the scalar and tensor metric 
fluctuations may be computed. In particular, the contributions to t~he vari- 
ance of the angular power spectrum of the CBR anisotropy on large angular 
scales (1 < 200) that arise predominantly due to the Sachs-Wolfe effect are 
given by [8] 

(IdA’) = gJdm ~-2Jwi(h)12dk, 

where rnss = ~uo/(l + znss)‘/* - - rn/35 is the conformal age at last scattering 
(znss N 1100) and j, is the spherical Bessel function of order 1. (We note 
in passing that both expressions are based upon the approximation that the 
Universe is matter-dominated at last-scattering; the small contribution of 
radiation, about 10%.20%, leads to corrections that are of the same order [8] 
and would have to be included in a more accurate treatment when the data 
so demand.) 

‘The point about which the potential is expanded is in principle arbitrary. However, 
the spectral indices TL and ~LT can only plausibly be measured on scales from 1Mpc - 
104Mpc and S and T depend upon perturbations on these same scales, so it makes sense 
to choose the expansion point to correspond to when these scales crossed outside the 
horizon during inflation; in addition, by taking k5,r0 = 1 several expressions simplify. 
The precise number of e-folds before the end of inflation when these scales crossed outside 
the horizon depends logarithmically upon the energy scale of inflation and the reheat 
temperature, see Refs. [4, 61; for the sake of definiteness we take this number to be 50, 
which can easily be changed to the correct value for a given inflationary model. 

2 



The contribution of scalar and t,ensor metric perturbations to the variance 
of the quadrupole CBR anisotropy can be computed numerically [5] 

s _ 5MJ2) 
47l 

E 2.2 [l + 1.2W + O.O8(n - l)] “;;{~;i-“, (7) 

T _ 5(14m12) kl(~soT3-“~ 
47l 

‘y 0.61 [l + 1.4nT] 
4 

(8) 

where the dependence upon (n - 1) and no is given to first-order. In eval- 
uating these expressions the effect of transfer functions is negligible as the 
integrals are dominated by kre N 2. For simplicity, following footnote 2 
we henceforth omit factors of (,&rn)r-” and (k5urn)-RT; they are easily re- 
inserted if needed. 

1.1 First-order reconstruction 

Since S, T, n, and 71~ are expressed in terms of the potential and its first two 
derivatives, one can invert the expressions to solve for the potential and its 
first two derivatives in terms of S, T, n, and nr plus a “consistency relation.” 
Those expressions are [Q] 

VsO/m~, = 1.65(1 - 1.4nr)T, 

= 1.65(1+0.20$)T, (9) 

Vl0lmh = S3.3GT, 

= f8.3 
/- 

;;T, (10) 

V$/m& = 21[(n - 1) - 3?LT]T, 

(n - 1) +0.43;1 T, (11) 

1T 
nT = -73 

In the second expressions for the potential and its first two derivatives we 
have used the consistency relation to express nT in terms of $, as $ should 
be easier to measure [lo]. Note that the sign of V’ cannot be determined as 
it can be changed by a field redefinition 4 - -$, though a specific choice 
here determines the signs of various later expressions. 
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This procedure actually generates the full second-order term for V&, while 
the other expressions are first-order. Our nomenclature and the overall re- 
construction strategy are explained and clarified below. 

1.2 The perturbative reconstruction strategy 

Before delving into the algebra of the more complicated second-order expres- 
sions, let us orient the reader with an overview of the perturbative recon- 
struction process [6, 91. The goal of the process is to express the inflationary 
potential and its derivatives, V$ for I = 0, 1,2, ‘. ., in an expansion whose 
terms are powers of observables, T1 $, n, nT, dn/dlnX, and so on. The 
choice of the set of observables is of course not unique. From these, the PI+ 
tential can be reconstructed over some finite interval via a series expansion. 
While one can hope to learn about the potential over the interval that affects 
astrophysical scales: it is probably not realistic to hope to learn much about 
the potential globally without some additional a priori knowledge (e.g., the 
functional form of the potential).3 

The formal expansion parameter is the deviation from exact scale invari- 
ance, which can be expressed as (n - 1); the other observables we shall use 
are: nr N O[(n - l)], 5 N 0[(n - l)], and dn/dlnX N 0[(n - 1)2]. (In 
the scale-invariant limit, V(4) =const, and n = 1, no = 0, $ = 0, and 

dn/dlnX = 0.) The expression for V$’ begins at order (,n - l)@T, with 
higher-order terms (n - 1) !++‘i2T JC = 1,2.3,. . . The expressions for higher , 
derivatives of the potential are not only of higher order in (n - l), but also 
involve more observables. For example, to lowest order the expression for 
V,, only involves T; that for V& involves T and $; that for Vi; involves T, 
$, and (n - l), and, as we shall see, that for V&’ involves T, 5, (n - l), 
and dn/d In A. (We have not included no in any of the lists, assuming im- 
plicitly that it is expressed in terms of the other observables by means of a 
consistency relation, as we now discuss.) Likewise, the expression for a given 
derivative involves additional observables as one goes to higher and higher 
order. 

3The one possible exception involves the accurate measurement of the stochastic 
background of gravitational w.~ves on scales from 1 km to 3000Mpc (corresponding to 
N Y 0 - 50) in which cake the inflationary potential could be mapped out directly since 
the amplitude of the tensor perturbation on a given scale is related to the value of the 
potential. 
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.4s a matter of nomenclature, we shall refer to the lowest-order term for 
any V$ or for the consistency relation as “first-order,” the next as “second- 
order,” and so on. The four expressions from Ref. [9] given above are respec- 
tively the second-order expression for V so, the first-order expressions for &‘a 
and V&, and the first-order consistency relation. In the next Section we shall 
use second-order results from Ref. [ll] to derive the second-order expressions 
for V&, V$, and the consistency relation, as well as the first-order expression 
for Vii,. Both the second-order expression for V$ and the first-order ex- 
pression for V$ involve the derivative of the scala,r spectral index, dn/dln X, 
which is likely to be very difficult to measure. Higher-order expressions for 
the potential and its first three derivatives, as well as the fourth derivative, 
will involve yet another even less accessible observable, and thus there is little 
motivation at present for proceeding further in the perturbative expansion. 

An important feature of reconstruction is that the problem is overdeter- 
mined; specifically, a set of M 2 3 observables can be expressed in terms 
of the potential and its first A4 - 2 derivatives. This implies a “consistency 
relation,” which, for increasing M, contains terms of higher and higher order. 
The lowest-order consistency equation, nr = -$$, has been much discussed 
(e.g., in Ref. [4]) and arises through Eqs. (l), (7) and (8) which express nT, 
S, and T in terms of V,, and V&. 

Calculating higher derivatives alone, while keeping the calculation of each 
derivative to lowest order, does not lead to the correct second-order term in 
the consistency equation, and nor does calculating the second-order correc- 
tions to the derivatives present. One must systematically do both. The 
second-order version of the consistency equation is obtained by calculating 
the potential, its derivative and Eq. (1) to a higher order. Adding an extra 
order to the calculation of V$ adds a new observable, (rz - l), which will 
appear in the consistency equation at second order. To account for there 
being still only a single consistency equation, there must be a new equation, 
and because (n - 1) has only entered at second-order in V&, we only need the 
first-order equation for V$. The second-order consistency equation, which 
we calculate in this paper, therefore relates nr, $ and (u - l), with the last 
only appearing as a second-order correction. Were one to desire a calculation 
to yet higher order, the same pattern would persist; each existing derivative 
must be calculated to one extra order and the next derivative to lowest or- 
der, introducing a new observable. This will generate next-order terms in 
the consistency equation with the new observable appearing at that order. 
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However, t,his presently cannot be done as third-order expressions for Vso and 
V&, have not been calculated. 

2 Second-order Reconstruction Reduced to 
Practice 

The reconstruction equations for the scalar potential and its first two deriva- 
tives, evaluated to second-order, are given in Ref. [II], though not in terms 
of cosmological observables. They are given in terms of the perturbation 
amplitudes A& and Ai. Very roughly, As is the horizon-crossing amplitude 
of the density perturbation on a given scale and AG is the horizon-crossing 
amplitude of the tensor perturbation (in the Appendix we provide some re- 
lations between notation used in that paper and this one.) Our purpose here 
is to express these second-order expressions for the potential and its first two 
derivatives in terms of the measurable quantities n, dn/dln XT no, S, and T. 

The amplitudes A: and AL are related to the observables S, Z’, no and 
n by: 

A; = 0.70(1 - 1.3nT)T, A; = 9.6[1 - 1.15(7x - l)]S, (13) 

where the (n - 1) and no dependencies have been found by evaluating the 
Sachs-Wolfe integrals numerically. Both expressions are accurate to second- 
order. 

Before deriving second-order expressions for the potential and its deriva- 
tives, we calculate the second-order version of the consistency relation. It is 
obtained from Eq. (2.9) of Ref. [ll], 

--=- 

where to the required order the slow-roll parameters E and 7 (defined in the 
Appendix) are given by 

E = -nT/2, ?) = (n - 1)/2 - 7L.T. (15) 

This gives a simple and very useful relation for AL/A:, 

A2 - -0.5nT [l - 0.5nT + l.o(n - l)] 
s 
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Substituting into Eq. (13). we find the second-order consistency relat,ion 

no = -f; [l - 0.87~~ + O.l5(n - l)] , (17) 

0* 
T 
- = -7nr [l + 0.8121 - O.l5(n - l)] 
S (18) 

TO the required order we can use the first-order truncation nT = -f$ inside 
the brackets, thereby obtaining an alternative form, 

nr = -g [l + 0.11; +0.15(7x - l)] ! 

where RT is given in terms of the more accessible quantities (n - 1) and $. 
Independent, measurements of n, 71~ and 5 provide a powerful test of the 

inflationary hypothesis; in the space of these parameters inflationary models 
must lie on the surface defined by Eq. (18). In Figure 1 we illustrate the 
inflationary surface both without and with second-order corrections. The 
second-order corrections break the degeneracy in the (n - 1) direction, as 
well as typically reducing $ viewed as a function of no and (n - 1). However, 
the portions of the surface that feature large corrections are not favored 
by present cosmological data, and further, are susceptible to higher-order 
corrections. (Indeed, well away from scale invariance the surface would be 
noticeably different even just using Eq. (19) instead of Eq. (18), which differ 
by third-order terms.) 

Obtaining the reconstruction equations is simply a matter of substituting 
into Eqs. (3.4), (3.6) and (3.15) of Ref. [ll] for V, V’ and V” respectively. 
We give two alternative forms for each, the first using 71~ and the second 
substituting 5 for nr using the second-order consistency equation. They are 

wm4p, = 

= 

%lmL = 

zx 

v;gm;, = 

1.65(1 - 1.4aT)T, 

(20) 

18.3fi[l - l.ln~ - O.O3(n. - l)]T, 

zt8.3 1 + 0.21; - O.O4(n - l)] T, (21) 



+0.6nr(n - 1) - O.Z(n - I)* - l.l& 1 T, 

zz 21 1 (n - 1) + 0.43; + 0.073 ( ;)z 

-0.015$ - 1) - 0.2(n - 1)2 - l.l& 1 T. (22) 

These expressions are accurate to second-order. Nat,ura,lly, they agree with 
the first-order expressions given earlier. 

Though no expression is given in Ref. [ll] for V”‘, by using the lowest- 
order expressions for E, 7, and a third slow-roll parameter E, and Eq. (3.13) 
which relates the three to dn/dln X, one can obtain the first-order expression, 

VJ/rnp, = +104- -6nr+4(n-1) T, 1 
= *104 0.9; + 4(” - 1) 1 T. (23) 

where the overall sign is to be the same as that of V’. The second-order term 
would require yet another observable. As remarked in Ref. [ll], even this 
first-order expression features the rate of change of the scalar spectral index, 
which is likely to be very difficult to measure. Realistically then, in the near 
term only the value of the potential and its first two derivatives are likely to 
be accessible to accurate determination. 

The final step in reconstructing the potential is to use d#/dN, N being 
the number of e-foldings, to find the range of 4 that corresponds to the eight 
or so e-foldings of inflation relevant for astrophysics. In effect, this introduces 
an additional small parameter, v = (50 - IV)/50 5 8/50, where N IT 42 is 
the number of e-folds before the end of inflation when the smallest scale 
of interest crossed outside the horizon. The smallness of this parameter is 
essential if the approximation of the spectra by power-laws is to be valid. 

To proceed, we may simply carry out a Taylor expansion of 4 about 450, 
to whatever order we believe is appropriate, 

4~ - 450 = (N - 56)$ + ;(N - 50)’ 2 +... (24) 
Qm #so 
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We can easily substitut,e for these derivatives. using as a starting point, the 
exact formula 

$lH! m=-4n , (25) 

which, along with dN/dt = -H, yields the relation from which the Taylor 
coefficients may be calculated, 

d$ rn& H’ 
m= 

-- 
4~ H (26) 

To get a given coefficient in the Taylor expansion for dN, one simply 
calculates d”@/dN” expanding to the desired order in the deviation from scale 
invariance.4 For example, taking only the first term in the 4~ expansion and 
working to first-order one obtains 

$N-C+4502.*= &J-nr (.V - 50), 

where again the overall sign is the same as that of V’. Next, we give the first 
coefficient in the 4~ expansion to second-order and the second coefficient in 
the 4~ expansion to first-order only, 

4N-450 = + =J--nr [l + o.lnT + o.l(n - l)] (iv - 50) 

f $6 [(n - 1) - 1~~1 (N - 50)’ + , (28) 

with both signs again agreeing with that of V’. 

3 Techniques and an Example 

Before going on to specifics, let us again consider perturbative reconstruction 
from the larger perspective. In constructing the Taylor series for the value of 

4Note this procedure differs slightly from that in Ref:[9], where d$/dN was expanded 
linearly about 450 and C$N was solved for exactly, cf. Eq. (8). This results in an exponential, 
whose expansion picks up the (N-50) and (N -50)’ terms correctly to lowest order in the 
deviation from scale invariance, though not the higher-order terms in the (N - 50) term 
which would require higher-order terms in the expansion of d$/dN. There is an overall 
sign error in Eq. (8) of Ref. [9]. 
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the potential at, a given point. the l-th term is given by V$‘($ - dsa)L/l!. As 
mentioned earlier L’$’ starts at order (,n - l)‘/‘T; from Eq. (28) we see that 
(4 - &a)l is of order (n - l)‘/‘AN’, where AN = N - 50 is around eight for 
the region of the potential corresponding to astrophysically accessible scales. 
Thus, the l-t,h term in the Taylor expansion to lowest order is 

I&(@ - &,)‘/Z! N O[(n - 1)’ AN’ T] + . . (29) 

In order that the series be clearly convergent, the deviation from scale in- 
variant (n - 1) should be less than about AW1 N 0.1. In the case that 
(n - l)AN N O(l), as in our example below, Eq. (29) suggests that the 
expression for each derivative be expanded to the same order in the devia- 
tion from scale invariance. On the other hand, if (n - 1) << 0.1, then clearly 
the higher-derivative terms in the Taylor expansion are less important, and 
a sound case could be made for expanding the lower derivatives of the po- 
tential to higher order in (n - 1). However, because of the existence of two 
expansion parameters, AN and (,n - l), that are a priori unrelated, in the 
general case there is no clear prescription. In our example below, where 
(n - 1)AN N 0(l), we will explore several possibilities, 

3.1 Expansion techniques 

Given the value of the potential and its first two or three derivatives at a 
point and the 4~ relation just obtained, one can reconstruct the potential 
on the observationally relevant scales (i.e., N N 42 - 50). The standard 
technique used previously is the Taylor expansion 

V(4) = v,o + v:u(dJ - 450) + $(4 - 4so)2 + ” (30) 

For many situations this is perfectly fine (e.g., when TQ and n - 1 are small, 
see Ref. [9]). However, if the range of eight or so e-foldings corresponds to a 
large range in 4 the convergence may not be very good because of the abrupt 
truncation of the Taylor series. Specifically, for large (4 - &,a) the shape of 
the reconstructed potential is dictated, rightly or wrongly, by the last term 
in the expansion (quadratic or cubic). 

An often used alternative is the Pad6 approximant [12], which can be 
generated directly from a truncated power series. For a power series that 
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extends to order N, t,he Pad4 approximants are quotients of two polynomi- 
als of order L (numerator) and M (denominator) denot,ed by [L; M]: where 
L + M = N. By construction: the expansion of [L, M] matches that of the 
power series to order N, but of course is not truncated. Very often, Pad4 ap- 
proximants provide a very good approximation over a wider range of values 
than the Taylor series from which they are derived; they in some way encode 
better estimates of the higher-order terms than does truncation. If we trun- 
cate the Taylor series at the second derivative, then the associated diagonal 
Pad6 approximant [I, l] is a ratio of two first-order polynomials given by5 

with 
a,j = V&n; b, = -V;;/2$,; a, = Vi0 - V50V;;1/2V;,,. (32) 

As we shall now illustrate by specific example, Padi! approximants have a lot 
to offer when the Taylor series proves a poor approximation. 

3.2 Reconstructing an exponential potential 

A useful testing ground for reconstruction is the exponential potential, the 
only known case where the perturbation spectra can be derived exactly an- 
alytically [13]. For the potential 

(33) 

the scale factor grows exactly as tP. Compared with the lowest order expres- 
sions, the amplitudes A and AT, or AZ, and A:, are both multiplied by the 
same p-dependent factor R’(p), where 

R(p) = 21/(P-‘)r i312 + ‘lb - ‘)I (1 _ l/p)P/b-‘) 
r[3/21 

(34) 

‘The [Z,O] approximant is just the truncated Taylor series; in addition to simplicity, 
there is sane motivation for using the diagonal approximant rather than the [0,2] ap- 
proximant as it is asymptotically constant, consistent with the flatness of inflationary 
potentials. 
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where r(...) is the usual gamma function. Both scalar and tensor spectra 
are exact power laws with spectral indices (11 - 1) = ‘7~. = -2/(p - 1). The 
scalar-field solution is characterized by 

~+gE; A&--?L; V(4,) = Viy exp [2(N - 50)/p] (35) 

The expressions for 2’ and S can be obtained exactly by integrating Eqs. (5,6), 

&t$ue 
s = ww~2~P~~~ (36) 

v/true 
T = 0.61g(~nr)RZ(p)~, (37) 

where the numerical factors f(n) = 1 + l.l5(n - 1) + and g(nr) = 1 + 
1.37~ +. arise from the n, nr dependence of the Sachs-Wolfe integrals, cf. 
Eqs. (5, 6). 

We are now ready to carry out an array of reconstruction methods. Be- 
cause we are using exact expressions to generate the spectra, this procedure 
is more ambitious, and more realistic, than those attempted thus far [6, 91, 
where the trial spectra were produced using the slow-roll approximation. For 
the general inflationary potential, exact results are not known, and so this 
procedure is not possible. However, our method here should give a more 
realistic estimate of inherent errors even in the general case. 

There are two distinct types of error. The first is error in the value of the 
potential at &a, due to third-order and higher terms. By substituting the 
expression for T in Eq. (37) into Eq. (9) or (20) for Vso we can compute that 
error: 

V5&$- = g(w)(l - 1.4w)R(p)‘. (38) 

The second error involves the shape of the potential, which depends on the 
ability of the chosen expansion to match the potential over the eight inter- 
esting e-foldings. 

We have chosen as a specific example an exponential potential with p = 
43/3. We did so because this leads to about the largest departure from scale 
invariance that can still be regarded as observationally viable, (n - 1) = 
no = -0.15 and 5 N l1 and thus realistically represents the most challenging 
example of reconstruction. The exact potential is shown in Fig. 2 along with 
the results of five different reconstructions. 
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To begin, consider t,he error in estimating 12,‘; g(nr = -0.15) = 0.824 
and so V5,/ll,re Y 0.95, a modest 5% due to the neglected higher-order 
terms. As we always include the second-order term in V,,, the error is the 
same in every method we look at. Had the first-order expression for V,, been 
used instead, corresponding to the neglect of the factor of (1 - 1.47~) in 
Eq. (9), then the underestimation would have been about 20%. 

Let us now consider the shape, which we note depends on T and S only 
through their ratio. The important distinction between different methods is 
the difference in required input data; methods needing only n and $ have 
the advantage of depending only on the information that is easiest to obtain, 
Requiring dn/d In X in addition, while offering more accuracy, is setting a 
much trickier observational task. 

As a starting point, let us take the equations derived in Ref. 191, which 
are primarily first-order though they include the second-order correction to 
V,,, cf. Eqs. (9-11). In this extreme example, the quadratic Taylor series 
based upon this does a bad job of approximating the shape of the potential, 
as it turns upward for large (4 - 45s) due to the truncation at the (4 - &,)* 
term (see Fig. 2). 

If we now require knowledge of dn/d In X, the Taylor series approach can 
be improved in two ways. We can now take V&, I&, and &‘A to second- 
order; however, the improvement is rather minimal. Alternatively, we can 
stick to first-order expressions, but include the Vi,’ cubic term. Again the 
improvement is modest, though at least the unwanted minimum has been 
eliminated. One could go further and take V,,, V&, and Vi/, to second- 
order and Vl[ to lowest order, which we haven’t illustrated, again seeing 
only modest gains for the increased observational requirement. 

The Taylor series having been unimpressive, let us progress in a different 
direction. With only n and $, as an alternative to the Taylor series one can 
construct the Pad6 approximant based upon it, taking V,, to second-order 
and Vi0 and Vi; to first-order. This represents a substantial gain on the Tay- 
lor series to that order without requiring any additional input information. 
With this minimal information, it is a much better method. Reintroducing 
dn/d In X allows this method to be extended to second-order, where the re- 
production of the shape of the potential is excellent. To include the third 
derivative term would necessitate a more complicated (non-diagonal) Pad6 
approximant, which doesn’t seem warranted at the moment. 

What is the upshot of this comparison? Recalling that we have chosen 
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an example wit’h extreme deviation from sca,le-invariance, the second-order 
corrections are reassuringly small and only improve the shape of the recon- 
structed potential slightly. The addition of the third derivative term in the 
Taylor series gives a slightly more significant improvement, but at the price 
of its dependence upon dn/d In X even at lowest order. The most remarkable 
improvement involves the use of Pad6 approximants. Even without knowl- 
edge of dn/d 1nX the shape of the potential is reproduced far better than 
with the higher-order Taylor series which does require that knowledge. As 
noted previously, the improvement results from the fact that the Pad6 ap- 
proximant is not truncated; further, even in situations where truncation of 
the Taylor series does not lead to problems, the Pad6 approximant still proves 
valuable as its Taylor expansion coincides with that of the original expan- 
sion. We therefore conclude that Pad6 approximants provide a significant 
improvement in the perturbative reconstruction of the inflationary potential. 

4 Discussion 

By presenting the second-order reconstruction equations directly in terms 
of observables, we have been able to assemble and to compare an array of 
different perturbative reconstruction techniques based upon cosmological ob- 
servables. Our work extends previous work in several important ways. 

The most interesting result is the introduction of the Pad6 approximant 
as an alternative to the Taylor series in perturbative reconstruction. It can 
be obtained from a Taylor series regardless of the order (in the deviation 
from scale invariance) to which the coefficients of the Taylor series has been 
obtained. In our worked example, the improvement in reproducing the shape 
of the potential as compared to the Taylor series is striking, especially con- 
sidering that no extra observables are required. 

We have shown that the second-order corrections to the Taylor series 
coefficients are generally small, and that those for b’s, and V& only depend 
upon the same quantities as the first-order expressions (S, T, and n). The 
corrections to V& however require a new observable such as dn/d In X, and 
by deriving for the first time an explicit expression we have confirmed that 
even the lowest-order term in V&’ requires this challenging observable. 

Finally, one of the most important aspects of reconstruction is that it 
is overdetermined: Any set of cosmological observables supplies degenerate 
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information regarding the potent,ial and its derivatives, thereby providing 
an important consistency check. In particular, the tensor spectral index 
can be expressed to second-order in terms of S, T, and n by the relation: 
nT = -$$[l+O.ll$+O.l5(n-l)]. I n cases that are observationally viable, 
the second-order corrections are small. 
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Appendix: Some Relations between Notation 

For the convenience of the reader, we summarise here some relations between 
the notation used here and that in Ref. [ll], from which several important 
results were taken. In that paper, the spectra As and AG were defined so 
as to include any scale-dependence within them, i.e., they are functions of k. 
In the perturbative reconstruction regime, where for most results the spectra 
can be approximated by power laws, these are related at lowest-order to the 
amplitudes A and AT in this paper, which are just numbers, by 

(39) 

(40) 

In making the connection, note that 8n N 25. For the higher-order terms, 
the scalar field kinetic energy must be accounted for in translating between 
H and V, which means these relations break down at higher order. 

In Ref. [ll], slow-roll parameters E and q are introduced, 

m$, H” -- 
“l= 477 H’ 
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which are again in general k-dependent. As indicated in Section 2 of the 
present paper, t,hey can be related to the spectral indices to various orders, 
E and 17 being of the same order in perturbation theory as (,n - 1) and nT. 
To lowest-order they are constant, corresponding to power-law spectra. At 
lowest-order E = 167rz2, but once more higher order corrections break this 
relation. 
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Figure Captions 

Figure 1: The consistency plane for inflation in n - nT - 5 space, the flat 
surface being the lowest-order result and the curved one incorporating the 
second-order corrections, given by Eq. (18). 

Figure 2: An array of different reconstructions of an exponential potential 
with (n - 1) = nr = -0.15 (p = 43/3). The longer dotted line indicates 
the exact potential. The three different line styles correspond to three differ- 
ent reconstruction strategies; solid is Taylor series truncated at (4 - &,)2, 
dashed is Taylor series truncated at (4 - &0)3 and dash-dotted is the Pade 
approximant based on the former of these. The upper line of a given style 
uses coefficients to first-order in the deviation from scale invariance (save V,,, 
which is always second-order), while the lower, where plotted, is second-order 
in all coefficients. The length of the curves corresponds to eight e-foldings. 
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